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1. INTRODUCTION

Redundant or correlated behavior of spectroscopic data can be costly to

the number of degrees of freedom of a measurement and thereby limit the

information content of a spectroscopic method of analysis.1 '2 Correlations can

take on many forms, including the band shapes of spectroscopic lines,

reproducible patterns of spectral features and time-dependent signals, or the

predictable variation of component concentrations in hyphenated spectroscopic

methods. While such correlated behavior limits the ultimate informing

capabilities of a spectroscopic technique, our knowledge of this behavior

represents valuable prior information which may be brought to bear on the

analysis of the data. Expectations of correlations, in the form of a model,

can be used to selectively filter out random fluctuations in data and extract

meaningful information in the presence of noise.

Regression analysis 4 or the method of least squares is one of he oldest

methods of statistical data analysis, having been first developed in the early

1800's by Gauss and independently by Legendre. The method provides a general

approach to extracting underlying relationships from data, including the

parameters which describe the relationship between points and the uncertainties

in those parameters. Regression methods have their roots in the method of

maximum likelihood5 which assures that the parameter estimates are unbiased and

efficient. In this chapter, regression analysis of spectroscopic data will be

presented, with emphasis on using models to describe the correlations which are

expected in the data, on proper weighting of observations, and on determining

uncertainties in estimated parameters. While this approach is particularly

powerful for multidimensional, hyphenated spectroscopic methods (time-resolved

fluorescence, GC-MS, LC-UV, etc.), the theory of regression methods will first
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be developed with examples from measurements of looer dimensionality. The

basis of regression methods for multidimensional data in the simple statistics

of estimating a mean and standard deviation provides an intuitive basis for

understanding more powerful analysis procedures, while extending our background

simple statistics into methods for manipulating spectroscopic data.

2. ANALYSIS OF ZERO-DIMENSIONAL SPECTROSCOPIC DATA (NUMBERS)

2.1. Method of Maximum Likelihood

The simplest of spectroscopic measurements provide an outcome which is

only a number, the variation of which with an independent variable such as

wavelength is not considered. An example of such a measurement is a

"colorimetric" analysis, where a sample is reacted with a chromogenic reagent

and the absorbance of the product is determined at a single wavelength. Let us

assume that we have made a series of N such measurements, x i, drawn from

population of described by a normal distribution having a mean, P, and a

standard deviation, ai, which can vary with measurement. Given these results,

we wish to determine the "maximum likelihood" estimate of the mean, ;, that is

an estimate of the mean of the underlying distribution which would maximize the

5
probability that we observed these results. The probability of observing a

series of events is the product of probabilities for observing the individual

events; thus, the probability of having observed the N measurements, x i, is:

/4=/

where Pi is normally distributed:
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Taking the product of Gaussian probabilities as a summation within the

exponential gives the following expression for the probability of having

observed the N results:

/ (3)

In order to maximize PN, we minimize the argument of the exponent with respect

t o P: 2 A l

Note that Equation 4 is a "least squares" expression which minimizes the

squared deviations between the mean estimate, m, and the observed data, x i,

weighted by the inverse of the variance of the observations, ai
2 . Solving

Equation 4 for ; gives the estimate of the mean of the underlying distribution

which maximizes the probability that we observed the particular series of N

measurements:

If the uncertainty of each of the measurements is constant, ai = a, then i/a2

can be factored out of the summation, and the maximum likelihood estimate of

5



the mean given by Equation 5 is simply the average of the N measurements.

The uncertainty of the mean estimate determined by Equation 5 can be found

from a propagation of errors 4'5 applied to this expression:

(6)

Again if the uncertainty of each measurement is constant, a i = a, then

Equation 6 predicts that the variance of the average of N measurements is 1/N

times smaller than the variance of the individual measurements.

2.2. Maximum Likelihood Quantitative Estimates for Peaks

A common goal in analytical spectroscopy is to estimate the concentration

of a sample which is responsible for an observed peak, which rises from the

baseline as a function of wavelength, frequency, or time. For such data, a

number of strategies may be implemented to estimate the sample concentration

including measurements of peak height or peak area. The maximum likelihood

method, developed above, provides an optimum method of data analysis for such

6
cases. To apply this method, consider N measurements of a spectroscopic

signal across a peak, zi = cgi + ei, where c is the true sample concentration,

gi is a model peak shape function, and ei is the error in the measured signal.

Under these conditions, each data point provides a measure of sample

concentration,

ci = zi/g i  (7)

the uncertainty of which depends on nature of the errors, ei , in the measured

signal.

If the noise or error in the signal is constant independent of signal
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amplitude, azi = az, then the standard deviation of the concentration estimate

varies inversely with the peak shape function, aci = az/gi. Substituting this

uncertainty relation and Equation 7 into Equation 5 provides a maximum

likelihood estimate of the sample concentration, c,

This result corresponds to calculating the zero-displacement value of the

cross-correlation between the signal and the shape function and is identical to

a "matched filter" estimate.
7

When the uncertainty of the signal depends on the signal magnitude (as in

the case of shot noise or proportional noise), then one need only substitute

the uncertainty relationship into Equation 5 to obtain the appropriate maximum

likelihood expression. For example, when the predominant noise present in a

signal arises from fluctuations in measurement sensitivity, such as excitation

source flicker, the standard deviation of the signal increases in proportion to

signal size. Since the signal and its uncertainty are proportional to gi, the

uncertainty in concentration is constant, independent of i. Substituting this

relationship into Equation 5, gives the following maximum likelihood expression

for estimating the concentration:

(9

For the case of shot noise, where the standard deviation of the signal varies

with the square root of the signal magnitude, the maximum likelihood estimate

of the sample concentration is given by the peak area.
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2.3. Application to Photoacoustic Spectroscopy

Absorption of radiation from a pulsed laser and non-radiative relaxation

of the excited states produces a rapid temperature rise in the sample which in

turn generates a pressure wave which can be detected by a piezoelectric

transducer.8 Reflections of the acoustic wave within the sample and transducer

result in a reproducible high frequency signal which persists for over 50 Ps.

While the peak compression signal at the start of the wave can be used for

quantifying the sample absorbance,8 the entire acoustic wave carries amplitude

information which could be used to provide a more precise determination. The

model of the peak shape, gi, can be obtained from well averaged photoacoustic

transients obtained from more concentrated samples.

In order to compute a maximum likelihood estimate the sample absorbance

from such data, the relationship between signal errors and signal size must

also be determined from replicate measurements. A plot of signal variance

versus the square of the signal amplitude from such measurements is generally

6.
linear, indicating a strong proportional noise component arising primarily

from pulse-to-pulse variation in laser energy. The intercept of this plot is

not zero, showing a constant noise source (detector noise) at low signal

amplitudes. Since the noise sources are uncorrelated, their variances add so

that the overall signal variance is given by:

O k 
(10)

where k is the coefficient for proportional noise and az2 is the constant noise

variance. Substituting this mixed proportional and constant noise model into

Equation 5 along with Equation 7, gives a maximum likelihood estimate which

8



weights large signals by 1/gi and small signals by gi, according to:

- (11)

Application of this equation to determining the sample concentration or

absorbance from photoacoustic transients is illustrated in Figure 1. The

capability of a maximum likelihood estimate to extract quantitative information

from noisy data is illustrated by these results. For the 1.9 x 10-5 cm-1

absorbance sample in Figure 1b, for example, the maximum likelihood estimate of

absorbance is in error by only 20% of the true value, despite the largest peak

in the transient being comparable to the noise. The scaled residuals, shown in

Figure ic, are random and of a magnitude expected for the experimental error,

indicating that most of the quantitative information has been successfully

extracted.

The limit of detection9 of the maximum likelihood photoacoustic absorbance

measurement, determined from replicates, was Amin = 7 x 10 cm1 , which

represents a 5(t2)-fold improvement over single point measurements at the peak

of the waveform. This observed result is indistinguishable from the

5.6(tO.2)-fold improvement predicted from a propagation of errors through

Equation 11. One can conclude from these results that the method of maximum

likelihood, an optimum technique for combining measurements of differing

uncertainty, is appropriate for the quantitative interpretation of signal peaks

where the peak shape is known in advance or is reproducible and can be measured

precisely. Propagation of errors through the maximum likelihood estimate

expressions allows one to predict both the uncertainty in the quantitative

results and the improvement in precision relative to other methods.
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3. ANALYSIS OF ONE-DIMENSIONAL SPECTROSCOPIC DATA (SPECTRA, WAVEFORMS)

3.1. Spectrophotometry of Mixtures

Acquisition of spectroscopic signals as a function of an independent

variable (wavelength or time) increases the information content of the

measurement1 ,2 over zero-dimensional results and allows the identity and

composition of complex mixtures to be determined. The linear relationship

between absorbance and concentration given by the Beer-Lambert law makes the

use of linear regression analysis appropriate for determining the concentration

of individual components in the mixture. The measured absorptivity (in cm- 1),

ai, of an n component sample at wavelength, i, can be written as the sum of the

absorptivity contributions of each component:

/

where kij is the molar absorptivity of component j at wavelength i, cj is the

molar concentration of component j, and ri represents the residual error in the

measurement. A series of absorbance measurements at m different wavelengths

generates a system of m equations, each having the form of Equation 12. It is

convenient to express this system of equations in matrix form-

44 -- k .R(13)

where A is a vector of absorbances of the mixture, measured at m different

wavelengths (the mixture spectrum), K is an m-by-n matrix of standard spectra

of the n components measured at each of the m wavelengths, C is a vector

10



containing the n unknown concentrations, and R is an m-element vector

containing the residual error in the measured absorption spectrum of the

mixture. Note that K is a model of the wavelength variation which we expect to

observe in the mixture spectrum, where each of the columns of K is weighted by

an element in C, the concentration of the particular component in the mixture.

Given such a model for mixture spectrum where the concentrations of the

components are unknown and an excess of degrees of freedom (m > n), one obtains

a maximum likelihood estimate of component concentrations by first calculating

the sum of the squared residuals with respect to the n concentrations (divided

by the constant measurement variance, ai2 = 62):

(14)

/Oe (14a)

To obtain a optimize the estimate, this chi-squared statistic 5 is minimized

with respect to each of the unknown concentrations by solving a series of n

"normal" equations of the form:

62f/ ) (15)

Note that Equation 15 is simply a multivariate form of Equation 4 which was

derived for maximum likelihood estimation of a single variable.

This series of n simultaneous equations has a simple linear algebra

solution4 '10 given by:

11



7 4 (16)

where the product of the first three terms on the rhs of Equation 16 are often

termed a pseudoinverse or least squares inverse of the matrix, K. A check on

the validity of Equation 16 can be made by allowing the residuals to vanish,

R.= 0, where the measured absorbance is exactly predicted by the model,

A = K C. Substituting K C for A in Equation 16 shows that, under these ideal

conditions, the maximum likelihood estimate for the concentrations, C, is

identical to the true concentration vector, C.

3.2. Analysis of Errors in Linear Regression

The uncertainty or variance associated with the concentration estimates

extracted from a mixture spectrum can be found by a propagation of errors

analysis of Equation 16. 4 The results of such analysis include both the

variance of each of the extracted parameters as well as the covariance between

parameters. These terms are collected into an n-by-n variance-covariance

matrix, V, with the parameter variances appearing on the diagonal and the

covariance terms as the off-diagonal elements. The linear algebra expression

4.
for the error analysis has a remarkably simple form, given by:

V 7- (17)

where 02 is the variance associated with the measured absorbance of the mixture

spectrum.

The concentration errors associated with such a spectrophotometric

12



determination of a mixture arise from the product of two terms on the rhs of

Equation 17, which have entirely different origins.1 1 The variance term, 62,

depends only on the precision with which the mixture spectrum is measured, and

is thus related to the characteristics of the instrument and experimental

methods. The second term, (KTK)- , is an n-by-n matrix which serves to amplify

the measurement error in the estimation of concentrations. The magnitudes of

the elements in this matrix, fjj, depend on differences between the spectra of

the components and the wavelengths chosen to measure absorbance, the latter

11
being an exercise in experimental design. The greater the similarity between

two standard spectra, which appear in the columns of K, the larger will be the

inverse of (KTK), particularly the diagonal elements corresponding to the

similar spectra and the off-diagonal elements between them.

3.3. Selecting "Analytical" Wavelengths

Choosing a set of wavelengths at which to gather absorbance data in order

to estimate the concentration of components in a mixture is an historic problem

in spectrophotometric analysis. 12 - 1 4 Since minimizing the parameter variance

(least squares) returns a value of the parameter which maximizes the likelihood

of having observed the data, one would optimally design quantitative, spectro-

photometric experiments by selecting "analytical" wavelengths which minimize

the elements of the variance-covariance matrix. Since the design only affects

(KTK)-I in Equation 16, one need not consider the measurement precision

contribution to V, when selecting wavelengths at which to gather data.

This regression-based concept for selecting "analytical" wavelengths has

15
been evaluated for two-component mixtures. Spectra were modeled as Gaussians

as shown in Figure 2, where the distance between the means was varied. To

13



assess the predicted error in the estimated concentrations as a function of

wavelengths in the design matrix, K, the sum of the diagonal elements of

(KTK)1, (fll + f2 2 ), is plotted versus the first two wavelengths chosen. The

results are shown as a contour plot in Figure 3 for the spectra in Figure 2b.

The error surface has equivalent minima at (XlX2) = (40,60) and (60,40), where

(f11 + f 22) = 3.90. Since the standard spectra are symmetric, fli = f22 ' the

minimum value of (f1 1 + f2 2 ) indicates that replicate determinations of the

concentrations of the components by a two-wavelength measurement at the best

wavelengths would exhibit a variance which is 1.95 times larger than the

variance of the absorbance measurements (see Equation 17). The optimum set of

wavelengths represents a distinct minimum, as shown in the slice through the

error surface in Figure 2b.

Generating optimal data at more than two wavelengths presents a larger

15
error minimization problem; an effective approach to dealing with this

problem is to fix the first two wavelengths at the above values and vary the

next pair. The concentration variance which results from this approach is

plotted in Figure 4. The results indicate that same pair of wavelengths are

optimal for the third and fourth measurements, as for the first two. The

concentration variance arising from two measurements each at the same pair of

wavelengths is exactly one half that observed for the two wavelength design of

Figure 3. This is not surprising since the design has not changed except to

double the number of measurements, which improves the measurement variance by a

factor two. While the optimal wavelengths in a design remain the same as the

number of measurement is increased, the minima in the error surface become much

less distinct; this trend is apparent in comparing Figure 3 with Figure 4, and

flattening of the error surface continues as m increases. The penalty for

14



measuring at less than the optimal wavelenyths is smaller once measurements at

or near the optimum region are included in the design.

To test this trend and its effects on concentration precision, a 50-fold

replicated, 2-wavelength experiment design was compared to a measurement of a

complete, 100-wavelength spectrum with wavelengths spread uniformly over the

range of Figure 2. For the resolution of component spectra R. = 0.5, 0.25, and

0.1, the concentration variance improved by a factor 3.1, 3.7, and 4.1,

respectively, when using the optimal, 2-wavelength design compared to measuring

a complete spectrum. The improvement in precision is greatest when the spectra

are poorly resolved, and the magnitude of the improvement is rather modest when

the number of measurements is large.

This modest gain in precision provided by a replicated n-wavelength design

for an n-component determination is offset by a significant penalty: an

insensitivity to model error. In the analysis of a mixture spectrum modeled by

Equation 13, we have assumed that all of the components in the mixture are

represented among the standard spectra in the matrix, K. If this is not the

case, due to an unexpected contamination for example, the vector of residual

error, R, which is the difference between the best fit, K C and the measured

spectrum, A, will generally show structure due to the spectral variation not

accommodated by the model; furthermore, the magnitude of the residuals will

exceed the expected measurement error. In the case of a replicated

n-wavelength design for an n-component determination, the residuals are not

sensitive to model error and will never exceed the measurement precision. This

situation is analogous to fitting calibration data to a straight line by

acquiring replicate measurements of the dependent variable at only two points

along the x-axis. If these points are at the origin and the extremum of the

15



x-axis, then the precision of estimating the intercept and slope are optimized.

On the other hand, this choice of measurements along the x-axis gives no hint

as to whether the data should be fit to a straight-line, that is whether the

assumed model is correct. For large numbers of measurements, acquiring data

over the entire range of the x-axis returns slightly poorer precision in the

estimated slope and intercept, but allows a non-linear response to be detected

in the residuals.

3.4. Weighting Observations in One-Dimensional Linear Regression

In the deriving the concentration estimates which maximize the likelihood

of having observed a particular mixture spectrum, we have thus far assumed that

the measurement variance is constant, as in Equation 14a. The estimated

concentrations, 8, given by Equation 16 are the values which minimize the sum

of the unweighted squared residuals, RTR. If error of measurement does not

satisfy this assumption, then the residuals, R, are drawn from populations of

differing variance, and the 1/ai 2 factors in the summation defining chi-square

in Equation 14 cannot be equated and brought outside the sum. The normal

equations (Equation 15) under these conditions must, therefore, minimize the

sum of the squared residuals with each weighted by the inverse of the expected

variance; this is analogous to Equation 4 for zero-dimensional data.

A convenient algebraic approach to achieving this goal is to multiply

Equation 13 by a weighting factor which makes the elements of the residual

vector have the same variance. A factor which will accomplish this goal is an

4
m-by-m diagonal matrix, W, where the elements, wii = 1/oi . Multiplying both

sides of Equation 13 by this matrix results in the following identity:

16



- -- 4_- (18

The elements of the weighted vector of residuals, (W R), are drawn from a

population having the same variance (equal to unity). The weighted definition

of chi-square has a simple linear algebra form given by:

=

where WTW is a diagonal matrix whose elements are 1/c.i2 . Since (W R) of

Equation 18 has uniform variance, one can obtain the maximum likelihood

concentration estimates for this equation using the linear algebra solution to

the normal equations for the uniform variance case, Equation 16. Multiplying

the weighted mixture spectrum, (W A), on the left by the pseudoinverse or least

squares inverse of (W K) gives the concentrations which minimize chi-square of

Equation 19:

(7= (20)

The variance-covariance matrix for the estimated concentrations from this

weighted least squares analysis arise from the inverse term of Equation 20,
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analogous to Equation 17 for the unweighted case:

)-I

3.5. Application to Time-Resolved Fluorescence Spectroscopy

Fluorescence measurements made with photon-counting detection and stable

excitation sources are generally dominated by shot noise, characterized by a

Poisson error distribution. 5 As a result, the residual errors arising from

fitting spectra or time-decay curves have a variance which is equal to the mean

number of counts detected, which for large number of counts (>100) may be

approximated (with <20% error) by the number of observed counts, ai2 - ai .

Substituting this approximation into W, results in the diagonal elements of WTW

having the value l/ai, so that the product (WT A) in Equation 21 is an

m-element column vector where all elements are unity. Interestingly, all of

the information about the measured fluorescence spectrum or time-decay curve

used to estimate the concentrations in Equation 21 resides in WTW, within the

inverse.

Recently, this method of data analysis has been applied to quantitative

resolution fluorescence decay curves where the lifetimes of the two components

are similar. 16 The form of the one-dimensional data is shown in Figure 5 where

naphthalene in cyclohexane is repetitively excited with a pulsed laser, and the

decay of fluorescence intensity is collected as a time-histogram of single-

photon arrivals following the excitation pulse.1 7 The decay of the excited

state population is governed by first-order kinetics. This single component

transient can, therefore, be fit to a single exponential decay of the form:

18



ai = (Cj/Tj)exp(i~t/Tj), by minimizing chi-square of Equation 19 with respect

to cj and Tj. While the magnitude of the unweighted residuals show a

dependence on signal intensity, as shown in Figure 5a, the residuals weighted

by the inverse of the expected shot-noise, shown in Figure 5b, are random and

have the same variance.

Time-resolved fluorescence spectroscopy can be used for multicomponent

determinations; the technique is especially useful, for example, as an in-situ

18
spectroscopic probe of molecular environments. Since detection of

fluorescence intensity is linear, the decay curve of intensity from a multi-

component sample can be modeled according to Equations 12 and 13, where K

contains normalized decay curves of the components, kij = (1/Tj)exp(it/Tj),

and the vector, C, contains the total number of photon counts (the pre-

exponential factors) which are proportional to concentration. This approach to

the quantitative analysis of mixed decay curves allows the use of Equation 20

to efficiently determine the statistically optimal set of pre-exponential

factors. If the fluorescence lifetimes of the components are known in advance,

then the known vectors which comprise the matrix, K, can be used to extract

concentrations in one step.

The advantage of having a physical model for a spectroscopic process being

measured, and thereby a functional form for the data, is that K need not be

known in advance. By varying the n fluorescence lifetimes, Tj, defining the

vectors in K, one can determine the particular lifetime values which minimize

chi-square according to Equation 19 and thus obtain the best estimate of the

matrix K for a measured decay curve. While the pre-exponentials and

fluorescence lifetimes can both be determined by a search of parameters, more

precise parameter estimates are obtained faster by incorporating the linear

19



least squares determination of d using Equation 20 into search for the n non-

linear parameters, Tj. 18 A second advantage of using a weighted, linear

regression step to estimate the component amplitudes is that the uncertainty of

the estimates can be predicted from first principles. Using the relative

standard deviations derived from variance-covariance matrix for Equation 20,

V = (KT wTw K) -
, the errors in determining the component amplitudes from a

series of measured fluorescence decay curves were predicted and compared with

the observed precision found in replicate measurements. As shown in Figure 6,

the error predictions of the variance-covariance matrix follow the observed

results over a wide range of total photon counts in the data.

4. TWO-DIMENSIONAL SPECTROSCOPIC MEASUREMENTS

4.1. Combinations of Correlated and Uncorrelated Dimensions

The exponential decay of intensity in a time-resolved fluorescence

experiment provides an excellent example of a correlated measurement dimension.

While fluorescence intensity is measured at hundreds of points in time in such

an experiment, the intensity channels are not independent but are related by

the functional form of the decay of the components. It is prior knowledge of

this relationship which allows the K matrix to be determined by fitting only

one parameter per component in the sample. While such correlated behavior is

valuable for resolving overlapped data from mixtures, the number of degrees of

freedom in such a measurement is drastically over data which is less

predictable and therefore more informative.
2

Among the most powerful spectroscopic methods for resolving and

identifying components in complex mixtures are "hyphenated"3 combinations of

correlated and uncorrelated measurement dimensions. Examples include GC-MS,

20



LC-UV, GC-IR, and time-resolved fluorescence spectroscopy. In these methods,

the correlated measurement dimension (generally the time-dependence, as in

chromatography-spectroscopy combinations) can be used to resolve overlap

between the components, either by using a physical model of the response 1 9 - 2 1

or by seeking out correlations in the time-dependence with factor

analysis. 22 -2 4 The spectra of components, thus resolved, generally show much

richer variation and thus contain more information for identification. In

absence of any prior knowledge of what possible components are present, the

unpredictable nature of the spectra makes mixture analysis with only this

dimension impossible. Therefore, the hyphenated combination of predictable and

unpredictable measurement dimensions is ideally suited to determining the

composition of a complex sample.

4.2. Modeling the Correlated Dimension: pH - UV Data Analysis

The use of physical models and regression methods for resolving component

behavior in a correlated dimension is greatly assisted by measurements taken

along a second spectroscopic dimension which is less predictable. Differences

in the components along the information-rich spectroscopic variable aid in the

convergence of the model. An example of this benefit has been demonstrated for

analyzing spectrophotometric titrations by measuring a complete UV-Vis

absorption spectrum as a function of pH. A synthetic example of such a data

set is shown in Figure 7, where the absorption of mixture of two monoprotic

acid/base pairs shows the dominance of the acid forms at low pH and the

transformation to base forms at higher pH. Since the absorbances of the

components in the mixture are additive, the absorbance at any wavelength, i,

and pH, j, is the sum of the contribution of each of the components in the
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mixture. The data for a given sample are no longer a single vector but rather

a matrix of absorption spectra as a function of pH.

If the spectra of the components are independent of pH where the acid and

base forms change only in relative proportion, the response can be modeled

according to Equations 12 and 13. The matrix A contains the absorption spectra

versus pH for the mixture, where i is the index of wavelength down the rows and

j is the index of pH across the columns. Like the one-dimensional case, K

contains the spectra of the n components in its columns, however, C is now a

matrix containing the pH dependent distribution curves in its rows. For a given

measurement of A, the data analysis task is to decompose the matrix into best

estimates K and C which is done without advance knowledge of either factor.

To carry out this task, the pH dependent distribution curves will be

modeled according to equilibrium theory; to factor the model behavior from the

data, however, the rows of C must be linearly independent so that a unique,

best fit value of K exists. This can be accomplished by defining the rows of C

25,26
as difference composition curves, one for each of the n acid/base pairs in

the mixture,

/(22)

which corresponds to a difference absorption spectrum in K given by:

k (6A 6-& ) AY[H~i'- Z-k (23)

where the difference in the molar absorptivity of the base and acid forms is
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multiplied by the sample path length, b, and the total concentration of the

particular acid/base pair. To preserve total intensity in the data, a final,

n + 1, row is defined in C in which all of the elements are equal to n. This

corresponds to an (n + 1) row in K, which contains the sum of all absorbing

species in solution including non-pH varying species.

For a given estimate of the pH dependent composition, 8, which requires an

estimating the n pKa's, the least squares set of difference spectra can be

found by multiplying the data matrix, A, by the right-pseudoinverse of C, which

is analogous to Equation 16 above,

(~ ~ 7 ~ T)'(24)

The quality of the fit of the product (K C) to the data depends on the accuracy

of the estimated pKa's defining a. To test the quality of fit, the value of

chi-square (Equation 14 for the unweighted case) is calculated. The estimates

of the pKa's are varied so as to minimize chi-square, usually by a Nelder-Mead

simplex algorithm 2 7 2 8 ; at each step of the non-linear least squares search for

the pKa's, the linear least squares step of Equation 24 returns the best

estimate of the matrix K for a given estimate of C.

4.3. Acid/Base Mixture Resolution and Error Predictions

To test this method of resolving mixtures of monoprotic acids, data

matrices containing absorption spectra of mixtures of two and four acid/base

indicators were acquired at intervals of 0.2 pH units over a pH range of 3.0

to 8.4. A plot of the four component data matrix is shown in Figure 8; the

composition of the sample is listed in Table I. From the shape of the data

surface, the spectral and pH variation of three acid/base components is
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apparent, but behavior of a fourth component is not obvious. It is, however,

clear that the component spectra and pH dependences are severely overlapped.

Despite the severity of the overlap, reiterative application of Equation 24 to

determine the least squares difference spectra as the n pKa's are varied to

minimize chi-square results in an optimal fit to the data matrix, with the

results summarized in Table I. The accuracy of the difference spectra which

are extracted from the mixture is illustrated in Figure 9 where the results are

compared with spectra of the individual components. The quality of fit is good

without any systematic error. The differences between the pKa's determined

from fitting the mixture and those obtained by fitting the isolated indicators

average 0.07 pH units, which is much less than the 0.2 pH interval between

spectral scans in the data.

The accuracy of the resolved difference spectra extracted from the mixture

is again predictable from first principles. The right-pseudoinverse in

Equation 24, (cT(c CT)-I), contains (n + 1) columns corresponding to the (n +

1) columns of K. These column vectors are multiplied by the corresponding rows

of the mixture absorbance matrix to extract the estimated spectra in K, one row

at a time. As a result, the error of this least squares solution depends only

on the variance of the mixture absorbance and the degree to which the rows of C

are overlapped, neither of which depend on wavelength. We can, therefore, use

the variance-covariance matrix of Equation 17, which for the right-pseudo-

inverse is V - (C CT)- 2, to predict the magnitude of the error in the

absorption spectra. Taking a value for the absorbance error from the root mean

squared residuals, a = 5.5 x 10- 3 a.u., the standard deviations of estimating

the difference spectra are predicted and listed alongside the observed error in

Table I. The agreement between the predicted and observed errors is reassuring.
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5. CONCLUSIONS

Regression methods of spectroscopic data analysis have their theoretical

roots in the method of maximum likelihood and least squares analysis. This

theoretical basis allows these methods to be derived from simple statistical

concepts and applied to multidimensional data. The use of regression method

with models takes advantage of correlations in data in order to reduce the

effect of noise and resolve overlapped component responses. Without exploiting

the prior information available in such correlations, they would only reduce

the information content of the measurement without providing any benefit.

A particular advantage of modeling is realized with hyphenated spectroscopic

methods which combine correlated and uncorrelated measurement dimensions.

Modeling the response in the correlated dimension resolves overlap of multi-

component samples and provides a pure component response in the uncorrelated,

more informing dimension. Using the theoretical basis of regression allows one

to predict, a priori, the errors of a data analysis procedure. This analysis

of errors can be used to properly weight observations contributing different

uncertainty to a result, to optimally design an experiment in terms of what

observations are made, and to know in advance what errors to expect in the

result.
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Table I. Reiterative Least Squares Resolution of Acid/ Base Mixtures

Sample Composition pKa pKa Observed Spectral Predicted Spectral
isolated mixture Error, sk Error, k*

methyl orange 3.27 3.50 5.4 x 10- 3  5.2 x 10-3

bromcresol green 4.77 4.74 3.2 x 1o- 3  2.3 x 10-3

methyl orange 3.27 3.39 5.5 x -3  5.8 x 10

bromcresol green 4.77 4.80 3.8 x 10 3  4.4 x 10-3

chlorophenol red 6.07 6.05 3.4 x 10 3  3.9 x 10-3

phenol red 7.71 7.71 4.4 x 1 3.7 x 10 3

* From variance-covariance matrix
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FIGURE CAPTIONS

1. Maximum likelihood absorbance estimates from photoacoustic signals.
6

Photoacoustic transients from azulene in carbon tetrachloride in parts a and b

-5 -1 -5 -1
have absorbances, A = 4.7 x 10 cm and 1.9 x 10 cm , respectively. The

best fits to the data (cgi) are shown as heavy lines. Part c show the residual

error for part b, scaled by the expected error.

2. Model spectra for two-component mixtures: (a) Xmax = 40, 60; resolution,

= 0.. b) A max= 45 55; resolution, Rs = 0.25. (c) Xm = 48, 52;R s = .5. b) Xa x  ,max

resolution, Rs = 0.1. The width (standard deviation) of the Gaussian peaks is

10 wavelength unit::,. Rs is the difference in the means of the two Gaussian

peaks divided by 4-times the standard deviation.

3. Variance in concentration estimates versus two analytical wavelengths for

spectra from Figure 2b. (a) Contour plot of (f11 + f2 2); increment between

contours is 1.73. (b) Horizontal slice through (a) at X, = 40.

4. Variance in concentration estimates for a four-wavelength design.

Wavelengths (40,60) are preselected according to Figure 3, and the next two

wavelengths are varied. Minima at (40,60) and (60,40) are indicated, where

(f11 + f2 2 ) = 1.95. (a) Contour plot of (f1 1 + f 22
) " (b) Horizontal slice

at X3 = 40.

5. Fluorescence decay curve for naphthalene in cyclohexane. (a) The data are

fit to a single exponential decay; (b) the residuals are weighted by the

1/2
predicted error, ri/(ai)

6. Observed and predicted errors in quantitative analysis of two-component

fluorescence decay curves. The lifetimes are Ti = 107.7 ns and T2 a 85.0 ns.

Solid squares are the relative standard deviation (rsd) predicted for the

shorter-lived component using the variance-covariance matrix; circled symbols
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are the observed rsd for this component. The x-axis indicates the total

photons counted in the measurement, (a, + a2).

7. Synthetic data for a spectrophotometric titration of a binary mixture of

monoprotic acids.

8. Spectrophotometric titration of four acid/base indicators. See Table I

for sample composition.

9. Difference acid/base spectra (solid lines) resolved from the four

component sample of Figure 8. PR is phenol red; CR is chorophenol red; BG is

bromcresol green, and MO is methyl orange. Dashed lines are the spectra of the

individual components, plotted for comparison.
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